DIY LLM Fine-Tuning: A Step-by-Step Guide
Introduction
In this post, we will walk through the process of fine-tuning a pre-trained language model (LLM) on a custom dataset. We will be using the HuggingFace Transformers library for this purpose.
Step 1: Install Dependencies
First, we need to install the required dependencies. We will be using the PyTorch backend for this tutorial, but you can also use TensorFlow if you prefer.
pip install torch torchvision torchaudio transformers datasets
Step 2: Import Libraries
Next, we import the required libraries. We will be using the Trainer
class from the transformers
library to fine-tune our model. We will also be using the datasets
library to load our custom dataset.
from transformers import Trainer
from datasets import load_dataset
Step 3: Load Dataset
Now, we load our custom dataset. We will be using the Wikitext-2 dataset for this tutorial.
dataset = load_dataset("wikitext", "wikitext-2-raw-v1", split="train")
Step 4: Load Model
Next, we load the pre-trained model that we want to fine-tune. We will be using the GPT2 model for this tutorial.
from transformers import GPT2Tokenizer, GPT2LMHeadModel
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
model = GPT2LMHeadModel.from_pretrained("gpt2")
Step 5: Tokenize Dataset
Now, we tokenize our dataset using the tokenizer that we loaded in the previous step.
def tokenize_function(examples):
return tokenizer(examples["text"])
tokenized_dataset = dataset.map(tokenize_function, batched=True, num_proc=4, remove_columns=["text"])
Step 6: Define Training Arguments
Next, we define the training arguments for our model. We will be using the Trainer
class from the transformers
library to fine-tune our model.
from transformers import TrainingArguments
training_args = TrainingArguments(
output_dir="./results",
overwrite_output_dir=True,
num_train_epochs=1,
per_device_train_batch_size=16,
save_steps=10_000,
save_total_limit=2,
prediction_loss_only=True,
)
Step 7: Define Training Function
Now, we define the training function for our model. We will be using the Trainer
class from the transformers
library to fine-tune our model.
def model_init():
return GPT2LMHeadModel.from_pretrained("gpt2")
trainer = Trainer(
model_init=model_init,
args=training_args,
train_dataset=tokenized_dataset,
)
Step 8: Train Model
Finally, we train our model using the Trainer
class from the transformers
library.
trainer.train()
Conclusion
In this post, we walked through the process of fine-tuning a pre-trained language model (LLM) on a custom dataset. We used the HuggingFace Transformers library for this purpose.